Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The San Fernando Valley (SFV), a densely populated region in Southern California, has high earthquake hazard due to a complex network of active faults and the amplifying effects of the sedimentary basin. Since the devastating 1994 Mw 6.7 Northridge earthquake, numerous studies have examined its structure using various geological and geophysical datasets. However, current seismic velocity models still lack the resolution to accurately image the near-surface velocity structure and concealed or blind faults, which are critical for high-frequency wavefield simulations and earthquake hazard modeling. To address these challenges, we develop a 3D high-resolution shear-wave velocity model for the SFV using ambient noise data from a dense array of 140 seismic nodes and 10 Southern California Seismic Network stations. We also invert gravity data to map the basin geometry and integrate horizontal-to-vertical spectral ratios and aeromagnetic data to constrain interfaces and map major geological structures. With a lateral resolution of 250 m near the basin center, our model reveals previously unresolved geological features, including the detailed geometry of the basin and previously unmapped structure of faults at depth. The basin deepens from the Santa Monica Mountains in the south to approximately 4 km near its center and 7 km in the Sylmar sub-basin at the basin’s northern margin. Strong velocity contrasts are observed across major faults, at the basin edges, and in the basin’s upper 500 m, for which we measure velocities as low as 200 m/s. Our high-resolution model will enhance ground-motion simulations and earthquake hazard assessments for the SFV and has implications for other urban areas with high seismic risk.more » « lessFree, publicly-accessible full text available May 28, 2026
-
Abstract Seismicity in the Los Angeles metropolitan area has been primarily attributed to the regional stress loading. Below the urban areas, earthquake sequences have occurred over time showing migration off the faults and providing evidence that secondary processes may be involved in their evolution. Combining high-frequency seismic attenuation with other geophysical observations is a powerful tool for understanding which Earth properties distinguish regions with ongoing seismicity. We develop the first high-resolution 3D seismic attenuation models across the region east of downtown Los Angeles using 5,600 three-component seismograms from local earthquakes recorded by a dense seismic array. We present frequency-dependent peak delay and coda-attenuation tomography as proxies for seismic scattering and absorption, respectively. The scattering models show high sensitivity to the seismicity along some of the major faults, such as the Cucamonga fault and the San Jacinto fault zone, while a channel of low scattering in the basement extends from near the San Andreas fault westward. In the vicinity of the Fontana seismic sequence, high absorption, low scattering, and seismicity migration across a fault network suggest fluid-driven processes. Our attenuation and fault network imaging characterize near-fault zones and rock-fluid properties beneath the study area for future improvements in seismic hazard evaluation.more » « less
-
Abstract Underground storage in geologic formations will play a key role in the energy transition by providing low‐cost storage of renewable fuels such as hydrogen. The sealing qualities of caverns leached in salt and availability of domal salt bodies make them ideal for energy storage. However, unstable boundary shear zones of anomalous friable salt can enhance internal shearing and pose a structural hazard to storage operations. Considering the indistinct nature of internal salt heterogeneities when imaged with conventional techniques such as reflection seismic surveys, we develop a method to map shear zones using seismicity patterns in the US Gulf Coast, the region with the world's largest underground crude oil emergency supply. We developed and finetuned a machine learning algorithm using tectonic and local microearthquakes. The finetuned model was applied to detect microearthquakes in a 12‐month long nodal seismic dataset from the Sorrento salt dome. Clustered microearthquake locations reveal the three‐dimensional geometry of two anomalous salt shear zones and their orientations were determined using probabilistic hypocenter imaging. The seismicity pattern, combined with borehole pressure measurements, and cavern sonar surveys, shows the spatiotemporal evolution of cavern shapes within the salt dome. We describe how shear zone seismicity contributed to a cavern well failure and gas release incident that occurred during monitoring. Our findings show that caverns placed close to shear zones are more susceptible to structural damage. We propose a non‐invasive technique for mapping hazards related to internal salt dome deformation that can be employed in high‐noise industrial settings to characterize storage facilities.more » « less
-
We utilized shear wave splitting analysis of teleseismic SKS, SKKS, and PKS phases to infer upper mantle deformational fabrics across a substantial area of Southeast Asia, where splitting measurements were previously limited. We used newly available permanent and temporary broadband seismic networks deployed across the Indo-Burma subduction zone and the eastern Indochina peninsula. The resulting 492 well-constrained splitting and 654 null measurements from 185 stations reveal clear large-scale patterns in the mantle deformational fabrics in response to the highly oblique active subduction and a large transform plate boundary. We identified two distinct domains of mantle deformation fabrics in the western Burma microplate and the eastern Indochina peninsula. In the former, trench parallel N-S fast polarization directions with an average lag time (δt) of 1.9 s are observed beneath the Indo-Burman Ranges. We suggest the observed splitting is partly due to anisotropy in the sub-slab region and relates to shear induced by the north moving Indian plate. The lithospheric fabric within the Indo-Burman Ranges and underlying subducting slab fabric contribute to produce the observed average δt of 1.9 s. The δt value decreases to an average of 1.0 s towards the back-arc until we reach the dextral Sagaing fault. In the second domain, starting approximately 100 km east of the Sagaing fault, we observe a consistent E-W fast direction with an average δt of 1.10 s in the eastern Shan-Thai and Indochina blocks. We interpret the E-W fabric as due to the deformation associated with the westward spreading of the Hainan mantle plume, possibly driven by overriding plate motion. Low velocities in the shallow mantle and late Cenozoic intraplate volcanism in this region support the plume-driven asthenospheric flow model in the Indochina peninsula. The sudden transition of the fast polarization direction from N-S to E-W along the eastern edge of the Burma microplate indicates the Sagaing fault acts as a mantle flow boundary between the subduction dominated trench parallel flow to the west and plume induced asthenospheric flow to the east. We also observed no net splitting beneath the Bengal basin which is most likely due to the presence of frozen vertical fabric resulting from the Kerguelen plume activity during Early Cretaceous.more » « less
-
We constrained sedimentary basin structure using a nodal seismic array consisting of ten dense lines that overlie multiple basins in the northern Los Angeles area. The dense array consists of 758 seismic nodes, spaced ~250–300 m apart along linear transects, that recorded ground motions for 30–35 days. We applied the receiver function (RF) technique to 16 teleseismic events to investigate basin structure. Primary basin-converted phases were identified in the RFs. A shear wave velocity model produced in a separate study using the same dataset was incorporated to convert the basin time arrivals to depth. The deepest part of the San Bernardino basin was identified near the Loma Linda fault at a depth of 2.4 km. Basin depths identified at pierce points for separate events reveal lateral changes in basin depth across distances of ~2–3 km near individual stations. A significant change in basin depth was identified within a small distance of ~4 km near the San Jacinto fault. The San Gabriel basin exhibited the largest basin depths of all three basins, with a maximum depth of 4.2 km. The high lateral resolution from the dense array helped to reveal more continuous structures and reduce uncertainties in the RFs interpretation. We discovered a more complex basin structure than previously identified. Our findings show that the basins’ core areas are not the deepest, and significant changes in basin depth were observed near some faults, including the San Jacinto fault, Fontana fault, Red Hill fault and Indian Hill fault.more » « less
-
The energy transition to meet net-zero emissions by 2050 has created demand for underground caverns needed to safely store CO2, hydrocarbon, hydrogen, and wastewater. Salt domes are ideal for underground storage needs because of their low permeability and affordable costs, which makes them the preferred choice for large-scale storage projects like the US Strategic Petroleum Reserves. However, the uneven upward movement of salt spines can create drilling problems and breach cavern integrity, releasing harmful gases into overlying aquifers and endangering nearby communities. Here, we present a novel application of data-driven geophysical methods combined with machine learning that improves salt dome characterization during feasibility studies for site selection and potentially advances the effectiveness of current early-warning systems. We utilize long-term, non-invasive seismic monitoring to investigate deformation processes at the Sorrento salt dome in Louisiana. We developed a hybrid autoencoder model and applied it to an 8-month dataset from a nodal array deployed in 2020, to produce a high-fidelity microearthquake catalog. Our hybrid model outperformed traditional event detection techniques and other neural network detectors. Seismic signals from storms, rock bursts, trains, aircraft, and other anthropogenic sources were identified. Clusters of microearthquakes were observed along two N-S trends referred to as Boundary Shear Zones (BSZ), along which we infer that salt spines are moving differentially. Time-lapse sonar surveys were used to confirm variations in propagation rates within salt spines and assess deformation within individual caverns. Seismicity along one BSZ is linked with a well failure incident that created a 30-ft wide crater at the surface in 2021. This study introduces a novel method for mapping spatial and temporal variations in salt shear zones and provides insights into the subsurface processes that can compromise the safety and lifetime of underground storage sites.more » « less
-
Abstract The Indo‐Burman subduction zone represents a global endmember for extreme sediment accretion and is a region characterized by ambiguous tectonic structure. The recent collection of broadband seismic data across the Indo‐Burman accretionary margin as part of the Bangladesh‐India‐Myanmar Array (BIMA) experiment provides an opportunity to investigate the subsurface velocity structure across the incoming plate of an endmember subduction system. We construct a three‐dimensional model for seismic shear velocity using a joint inversion of surface‐ and scattered‐wave constraints. Rayleigh‐wave phase velocities measured from ambient‐noise (12–25 s) and teleseismic earthquakes (20–80 s) constrain absolute shear velocities, while we constrain the locations of and relative contrasts across significant discontinuities in the subsurface using observations from scattered‐wave imaging. From the resulting inversion, we observe two model classes that characterize the evolution of consolidation within the markedly slow uppermost sediments and metasediments along a predominantly southwest‐to‐northeast trend. We interpret variations in deeper seismic structure under two proposed scenarios: (a) a Moho of ∼21–26 km depth underlying a package of metasediments and a thinned basement component, with a slow mantle lithosphere (4.2 km/s) that may contain retained melt from the onset of India‐Antarctica seafloor spreading; or (b) a Moho of ∼51–59 km depth underlying a package of metasediments, basement, and a thick slug of mafic material, which may correspond to significant Kerguelen‐plume‐related underplating. By combining constraints from highly resolved phase‐velocity estimates and scattered‐wave images, we successfully characterize the lateral transitions across the Indo‐Burman forearc margin.more » « less
-
Accurately predicting the seismic wavefield is important for physics-based earthquake hazard studies and is dependent on an accurate source model, a good model of the subsurface geology, and the full physics of wave propagation. Here, we conduct numerical experiments to investigate the effect of different representations of the Southern California Earthquake Center and Harvard community velocity models on seismic waveform predictions in the vicinity of the San Andreas fault in Salton Trough. We test general preconceptions about the importance of topography, near-surface geotechnical layering, and anelastic attenuation up to a maximum frequency of 0.5 Hz. For the Southern California Earthquake Center model developed without topography, we implement 1D and linear model extensions that preserve the geologic structure and a pull-up approach that adapts the original model to topographic variations and distorts the subsurface. The Harvard model includes an elevation model, so we test the squashed topography representation, which flattens it. For both community models, we modify the top 350 m by partially applying the Ely geotechnical layer using a minimum shear wave velocity of 600 m/s and incorporate an Olsen attenuation model using a ratio of 0.05. We evaluate the resulting 24 model representations using the classical waveform misfit and five moderate-magnitude earthquakes. Only the inclusion of attenuation consistently improves the wavefield predictions. It becomes more impactful at higher frequencies, where it significantly improves the performance levels of the crude 1D and linear extension models close to that of the original version. The pull-up topography representation also enhances the waveform prediction ability of the original model. Squashing the topography of the elevation-referenced Harvard model produces better seismogram fits, suggesting that seismic imagers construct community tomographic models without topography to avoid issues related to missing model parameters near the free surface or discrepancies with a different elevation model. Although full implementation of the Ely geotechnical layer that would permit shear wave velocities as low as 90 m/s proves computationally expensive, our partial implementation provides slightly better results in some cases. Our results can serve as recommendations for implementing these community models for future validation or optimization studies.more » « less
An official website of the United States government

Full Text Available